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Abstrac t  

We exhibit a surprising relationship between separable Hamiltonians and integrable, linearly 
degenerate systems of hydrodynamic type. This gives a new way of obtaining the general solution 
of the latter. Our formulae also lead to interesting canonical transformations between large classes 
of St~ickel systems. 
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1. I n t r o d u c t i o n  

We consider a standard 2n-dimensional  symplectic manifold and a pair of functions H 

and F which commute with respect to the standard Poisson bracket. This means that the 

Hamiltonian vector fields XH and XF commute with respect to the standard Lie bracket. 

The integral curves of  the Hamiltonian vector fields lie on 2-dimensional surfaces which 

can be co-ordinatised by the respective "times", x and t, of XH and XF. For non-degenerate 

H (02H/Opi Opj non-singular),  we can write Pi in terms o f q  i and qx. We can then write the 

qi components of XF as a system of  first-order PDEs in the variables qi. When both H and 

F are quadratic in Pi, these equations are of  hydrodynamic form. In this paper we assume 
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(losing only some degenerate examples) that this system can be written in diagonal form. We 
show below that only linearly degenerate, semi-Hamiltonian systems can arise in this way. 

We then show that each linearly degenerate, semi-Hamiltonian system can be associated 
with an infinite (depending upon 2n arbitrary functions of one variable) number of such com- 
muting pairs of Hamiltonians. Since the latter are quadratic in momenta (and diagonalised), 
the corresponding Hamilton-Jacobi equation is separable. We use the Hamilton-Jacobi 
method to construct the general solution of the hydrodynamic system. Thus an arbitrary 
linearly degenerate semi-Hamiltonian (and not necessarily Hamiltonian) system of hy- 
drodynamic type is decoupled into an infinite number of finite dimensional Hamiltonian 
subsystems. These Hamiltonian subsystems are just the restrictions of this hydrodynamic 
system to the set of stationary points of its higher integrals, which are quadratic in the first 
derivatives (recall that the restriction of an arbitrary evolution system to the set of station- 
ary points of any of its higher integrals is always Hamiltonian [13,14] ). The point is that 
an arbitrary linearly degenerate semi-Hamiltonian system of hydrodynamic type possesses 
infinitely many higher integrals, which are quadratic in the first derivatives. However, we 
prefer the finite dimensional Hamiltonian subsystems to the higher integrals, since they 
have a more transparent mechanical interpretation. 

This is only the first paper of our programme of research, since we are left with many 
interesting questions. We outline two of these in the conclusions. 

2. Hamiltonians with a first integral which is quadratic in momenta  

We consider the standard symplectic space with canonical co-ordinates (Pi, qi) and a 
pair of Poisson commuting functions H(p, q) and F(p, q), both of which are quadratic 
in p. These define a pair of symmetric quadratic forms in p, which can (generically) be 
simultaneously diagonalised. In this paper we assume this non-degeneracy and write H and 
F in diagonal form: 

n 

1 E gkk(q)pk2 + h(q), (1) H = 2k_=1 

P/ 

1 E vk(q)gkk(q)pk2 + f(q)'  (2) F = 2 k =  ! 

where gkk is the kk-component of the inverse of the metric on some Riemannian or pseudo- 
Riemannian manifold. Requiring that H and F be in involution, 

{n, F} = 0 

leads directly to the following restrictions on gkk(q), vk(q), h(q) and f(q) (we assume 
gkk ¢ 0 and v i :~ vJ for any i # j): 

Oiv i=O for a n y i =  1 . . . . .  n, (3) 

0 i V k 
Oi In g k k  ~_ v i _ V k for any i ¢ k, (4) 
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O i f = v i o i  h f o r a n y i  = 1 . . . . .  n, (5) 

where Oi = O/Oq i. 

Now consider the equations of motion for the Hamiltonians H and F, writing x and t as 
their respective "times": 

q~ = OH .. OH 
Opi = g n p i '  Pix --  , (6) Oq i 

q~ OF • .. OF 
- -  - -  v~ g~t P i ,  P i t  = - - m "  ( 7 )  

Opi "Oq ~ 

Eqs. (6) and (7) imply the following hyperbolic system f o r  qi: 

q[ = v i (q)q i . ,  i ---- 1 . . . . .  n. (8) 

Thus any solution of the pair (6) and (7) generates a solution qi (x ,  t )  of the hydrodynamic- 
type system (8). The variables qi are, in fact, the Riemann invariants for system (8). It 

turns out that the restrictions (3)-(5) can be naturally interpreted in terms of this system. 

For example, the first of these means that system (8) is linearly degenerate (referred to as 
'weakly non-linear' in [3]). Cross-differentiation of (4) gives 

~i v k Oj v k 
OJ vi _ v~ - Oi v j  _ v ~ for a n y i : ~ j : ~ k ~ i .  (9) 

This means, that system (8) is semi-Hamiltonian [ 10]. Finally, condition (5) means, that the 
1 -form 

h ( q )  dx + f ( q )  dt  

is an integral of system (8). Thus h is a conserved density of (8) with f the corresponding 
flux. We recall, that any semi-Hamiltonian system possesses infinitely many integrals of 

hydrodynamic type (i.e. integrals with the densities h ( q )  independent of the derivatives 
qx,  qxx,  etc.), parametrised by n arbitrary functions of one variable (see [ 10] and the reviews 

[1,1 ll). 
Comple t e  integrabili ty.  The existence of H and F as above (both quadratic and simulta- 

neously diagonalised), with v i distinct, guarantees the existence of n (including H and F) 
independent integrals in involution, all of which are quadratic in momenta and in diagonal 

form. This is very easy to see. Suppose 

1 
wk(q )g l~k (q )pk2  + Y ( q )  G=2k= l 

is another such integral. Then w k and y must also satisfy (3)-(5), so that the first derivatives 
of w i are given by 

Oj ~lA i Oj O i 
- - - -  j # i  and Oi w i = 0 ,  

uJJ --  7jA i l)J - -  I) i '  

which is a system of l inear  equations for w i (given vi) .  The integrability conditions are 
guaranteed by conditions (3) and (4) for v i. The n independent solutions give us n first 
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integrals. The solution w i = 1, ¥i, corresponds to H itself, whilst the solution w i ---- v i 
corresponds to F. The function g is most easily interpreted in terms of the corresponding 

system of hydrodynamic type: 

q~ i i = w (q)qx, i =  1 . . . . .  n. 

With respect to this time evolution, g is the flux corresponding to density h. In this way 
we build n such integrals and time evolutions (w{k), Yk, rk), k = 1 . . . . .  n, giving rise to n 

commuting hydrodynamic systems. We take the first of these to be wll ) = 1 and }'1 -- h, 

corresponding to the Hamiltonian H and the simple hydrodynamic system q /  = qi,  so 

that rl = x. Similarly, w{2 ) = 1) i and Y2 = f ,  with r2 = t, gives our system (8). 
Our construction thus naturally leads us to separable Hamiltonians of St/ickel type. 

Example  2.1 (The H6non-Heiles Hamiltonian). 

Heiles Hamiltonian is given by 

H =  l(p? -l- p2)_1_ ½QIQ22 _F QI 3 

One of the integrable cases of the H6non-  

(lO) 

This is the case associated with the stationary fifth-order KdV equation [5] and has a first 
integral which is quadratic in P: 

F Q l p 2  Q2piP2 - -  1012022 IQ24. = 2 -- -- (11) 

Whilst H generates the stationary fifth-order KdV equation (in H6non-Heiles co-ordinates), 

F generates the KdV equation. The Q-parts of  the corresponding Hamiltonian flows are, 
respectively, of the form: 

OH OH 1 

Q x - - -  - e l ,  Q x -  - P2, 
OPl OP2 

OF _ 2 Q i p 2 _ Q2 pl " Q]--OpIOF-- O2p2 ' 02_  1,2 

Eliminating Pi, Q1 and Q2 satisfy the PDEs: 

Q] _ Q 2 Q 2 ,  Q2 2 1 1 2 
=- = - Q  Qx + 2Q Qx X 

(12) 

R e m a r k  2.2. Note that Q] = - 1 / 2 ( Q 2 ) 2 ,  whilst the H6non-Heiles equation gives - 1 / 2  
(Q2)2 = Q1 x + 3(Q J)2, so that F does indeed generate the KdV equation: 

(o' + 3(o'  
X X  / X  

The hydrodynamic system (12) is diagonalisable and linearly degenerate. In terms of the 
Riemann invariants, 

ql = QI v/ Q12 + Q22 ' q2 = QI + v/ QI2 + Q22 ' 
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this assumes the form 

qt I = q-qx' q2 = q qx" 

The inverse of this point transformation is given by 

QI : l (q l  +q2) ,  Q2 = ~ / ~ l q 2 .  

In the context of our finite-dimensional Hamiltonian systems, t h e  qi are called parabolic 
co-ordinates. For a point transformation the momenta Pi are linear functions of Pl and Pc. 
To preserve the symplectic form ~ dPi /~ dQ i : ~ dpi A dq i this linear transformation 
takes the form 

Oq j 
P i =  p j ~ ,  i : 1 , 2 ,  

.: 

and under this canonical transformation both Hamiltonians H and F become diagonal: 

2 q ~  2q 2 1 "~ 
H -- ql _ q2 pI2 + qf~_ql  p22 + ½(ql + qZ)(q - + q22), (13) 

2qlq 2 2qlq 2 
F =  ql _ q 2  p12 + q2-~ql  p22 + ½qlq2((ql +q2)2 _ qlq2). (14) 

3. Solving the hydrodynamic system 

Suppose we are given the linearly degenerate, semi-Hamiltonian system (8). We can 
determine the coefficients gkk from Eq. (4) (which are compatible, due to (9)). Note, that 
gkk are defined up to transformations gkk ~ ~pk(qk)gkk, where <pk are n arbitrary functions 

of one variable. Let h (q) dx + f (q) dt be any integral of hydrodynamic type of system (8). 
It should be noted that semi-Hamiltonian systems have an infinite number of integrals of 
hydrodynamic type, (also) depending on n arbitrary functions of one variable. Choosing any 
of these gkk, h and f ,  we may construct two commuting Hamiltonians H and F of the form 
(1) and (2). Solving the equations of motion (6) and (7), we automatically obtain a solution 
of the hydrodynamic-type system (8). Varying g~k and the integral h(q) dx + f ( q )  dt, we 
can construct an arbitrary solution of our system. One may argue, that the solutions of 
hydrodynamic-type system (8) depends on only n arbitrary functions of one variable, while 
the arbitrariness in the construction of H and F contains 2n arbitrary functions (n from gkk 
and n from the integrals). However, this gives us two different schemes of integration. 

Var3'ing the metric. Here we fix the integral (for simplicity we choose h = f = 0), and 
vary gkk. Then our Hamiltonians H and F assume the form 

" 

1 Z g k k ( q  ) p k 2  F = 1 vk(q)gkk(q )pk2. 
H=2k= I 

Note, that the equations of motion, corresponding to this Hamiltonian, H, are just the 

equations of geodesics for the metric d s  2 = Y~ gkk dq k2 (where gkkg kk = 1 ). W e  s h o w e d  
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earlier that these equations admit n quadratic (in momenta) integrals and are thus separable. 
The Riemannian spaces corresponding to these metrics are called St~ickel spaces (see [2]). 

Thus our first scheme reduces the integration of a given linearly degenerate, semi- 
Hamiltonian system (8) to the integration of the equations of geodesics in St~ickel spaces. 
Furthermore, given (8), Eqs. (3) and (4) can be solved for gkk. The complete solution pos- 
sesses n arbitrary functions and the geodesic equations are separable for this general metric. 
The solution qi of these geodesic equations thus contains n arbitrary functions and thus 
constitutes the general solution for system (8). 

Remark 3.1. The relationship between linearly degenerate, semi-Hamiltonian systems and 
St~ickel metrics was noted previously in [3]. Here we explain the origin of this connection. 

Varying the integral. Now we take the metric gkk fixed (any solution of Eq. (4)), and 
vary the integral. From the point of view of classical mechanics this means that we consider 

the motion of a particle in a St~ickel space with the metric ds 2 = Y~ g~k dq k2 fixed, but 
with varying potential h(q). This motion has Lagrangian L = ! ~ gkk(qxk)2 _ h(q) and 2 
Hamiltonian H = ½ ~ gkkp2  + h(q). Thus our second scheme reduces the integration 

of the given linearly degenerate, semi-Hamiltonian system (8) to the integration of the 
equations of motion of a particle in a St~ickel space with varying potential. Of course, 
the potential h(q) is not arbitrary and belongs to the class of the so-called "separable" 
potentials, for which the equations of motion can be integrated by the method of separation 
of variables. In fact, the potential h is restricted to be a conserved density of system (8), 
with the corresponding flux satisfying system (5). The integrability conditions lead to the 
system of second order, linear equations for h: 

OiOjh = (oJvi)Oih - (oivJ)OJh 
vJ - vi 

Any solution of this gives a separable potential for the St~ickel metric gkk. 

3.1. An important example: I) i = Z~=I qk _ q i  

Consider the linearly degenerate, semi-Hamiltonian system: 

(~l  qk q i )  q[ = vi(q)q i = - qi x, i = 1 . . . . .  n. 

In this case Eq. (4) assumes the form 

1 
0 i In gkk _ i ~ k, qk _ qi ' 

leading to 

gkk -= ~ok(q k) 

[I jck(q k - q J)' 

(15) 

(16) 
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where (pk are n arbitrary functions of  one variable. The integrals h (q) dx + f (q) dt of  system 

(15) can also be calculated explicitly: 

h(q) = £ 
k=l [IJ# k(qk ~- qj) f(q) = k=l~ Vk~!qk) 

Ok(q k) 
- -  , [_ijek(qk~q~ ). (17) 

It was shown in [3] that the general solution of system (15) is given by the implicit 
formulae: 

qn 
fq' ~n-, d~ [ ~n-! d~ 
J . f , ( ~  + +  j fn($) --x +cons t . ,  

qn 

fl(~ +""  + fn(~) t + const., (18) 

q I qn 

~ + . . .  + y ~ - ~  - -  c o n s t . ,  i = n - -  3 . . . . .  0, 

where  f i  (~) are n arbitrary functions. (The constants on the right-hand sides are not essen- 
tial, since the lower bounds in the integrals are not specified.) 

We now demonstrate how formulae (18) can be recovered within the current framework. 

Thefirst scheme. We consider the equations of geodesics for the metric 

d s 2 =  E gkk dqk2 = £ [Ijck(qk -- qJ) dq k2 k=, -j r; (19) 

with ~0 k (qk) arbitrary. The corresponding Hamiltonians H and F are of  the form: 

1 ~  g kk pk2 1 ~  q)k(q k_..___~)p___k 2 
H = 2 k=l = ~ k=l l_ijck(q k _q  j), (20) 

F = 2 k=, = ~ k=, l . _ i i ¢ k ( ~ - ~  . (21) 

According to the Hamilton-Jacobi  theory, we look for a canonical transformation (Pi, qi ) 
(ai, b i) in the form Pi = OS/Oq i, bi = OS/Oai, where S(q, a) is the generating 

function, satisfying the Hamilton-Jacobi  equation: 

1 £ ~k(qk)(OS/Oqk) 2 
k=l [-lj¢k(--~----q~ = const. (22) 

Since the metric ds 2 is of St~ickel type, we can write S in separable form 

S(q,a) = Sl(q l, a) + . . .  + Sn(q n, a),  



176 E.V. Ferapontov, A.P. Fordy /Journal of Geometry and Physics 21 (1997) 169-182 

after which Eq. (22) becomes 

' ~ (pk(qk)(S'k) 2 

i k=l 1-Ij#k ( ~ k - - ~ )  = const., 
, 0 Sk (23) 

S k -  Oqk" 

It is an easy matter to show that the numerators in (23) must be the same function of their 
respective variables and that this must be polynomial: 

¢pk(qk) (S'k) 2 = r (qk) ,  

where we introduce the notation r(~)  = al + a2~ + . . .  + an~ n-1 • Hence 

ql qn 

f ~ r ( ~ )  ,. f / r ( ~ )  de 
S ( q , a ) = --T-~ ag + . . . +  j V-Z-~( ~ ) . (24) 

In the new canonical variables ai, b i = OS/Oai the Hamiltonians H and F become 

H = ½an, F ~ - - - ½ a n - l ,  

which generate trivial flows: 

OH 1 OH i -- OH - - o  'di ~ n '  bn -- - -  - - 2 '  
aix = -- Ob i ---- 0 '4i, b x Oai Oan 

and 

OF i OF OF 
ait = - - " " =  = 0 ¥ i ,  b t - -  -- 0 ¥i  ~ n - 1, b t  - l  -- - -  

Ob ~ Oai Oan-I 

Hence 

2 

b i = const, for i -- 1 . . . . .  n - 2, 

b n-1 -- - ½ t  + const., 

b n = ½x q-const .  

(25) 

Differentiating (24), we find 

ql qn 

bi - OS if ~ i - 1  if ~i-1 
Oai -- 2 x/r(~)qgl(~) d~ + . . .  + ~ ~/r(~)~on(~) d~. (26) 

Introducing fk  = x/r(~)~0 k (~) and combining (25) and (26), we arrive at formulae (18). 
The second scheme. We now choose a particular metric of (16): 

gkk = R(q  k) 

1-[j#~(q k - q J ) '  
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4 Vln+l  whereR(~)=  llj=l(C j - ~ ) ,  C j =const., j = 1 . . . . .  n+ l. Thisisthemetricofthe 
unit sphere S": 

12 "~ x + . . . + x  n+l" = 1, 

written down in the spherical-conical co-ordinates: 

/H,, ,c, [ 
x t = / l  lk=l________2t - qk) x n+l = 

V 1-Ij   1 . . . . .  _ 

For this choice of the metric and for the potentials (17) the corresponding Hamiitonians H 
and F (see (1) and (2)) assume the form 

1~-~ R(qk)pk 2 £ grk(q k) 
H = -~ l _ i j C k ( q ~ q j )  + , (27) 

k=l k=l ] - l s ~ -  qS) 

1 ~  v~R(q~)pt 2 £ v~pk(q k) 
F = ~ l_ljek(qk~qj ) + - - - -  . (28) k=l k=l I-]JCk (qk - q  J) 

Hamiltonian H describes the motion of a particle on the unit sphere S n under the action of 
the potential h. 

Once again, we look for a canonical transformation (Pi, qi) ~ (ai, b i) in the form 
pi =-- OS/Oq i, bi = OS/Oai,  where the generating function S(q, a) satisfies the Hamilton- 
Jacobi equation 

l £ R(q~) (OS/Oqk)2 £ tpk(q k) 
"~ l__[j¢~k(q---£~-- ~ + - -  = const. 

k=l k=l ]-IJ¢ k(qk ~ q j )  

Once again, this is separable: 

S(q, a) = Sl(q I, a) + ... + Sn(q n, a), 

SO w e  obtain 

(12 1~--~ R(qk 2 S ~ 2  2grk(qk) , OSk 
k=l  ]"Ij¢k(qk 2_-~  = const., S k -- Oq k, (29) 

with solution 

R(qk)(S'k)2+2Ok(qk)=r(qk),  

where r(~) = al + a2~ + "" + an~ n-l. Hence 

ql qn 

S(q, a ) = f ~  r(~)-2~pl(~)~(~ d~ + . - - +  f ~/r(~) - 2~Pn (~) d ~ . - ~ ( ~  (30) 
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In the new canonical variables ai, b i = OS/Oai the Hamiltonians H and F become (as 

before) 

H =  l an and F = - ½ a n _ l .  

With 

ql 

1 f ~i-l bi - OS - -2  
Oai ~/R(~)(r(~) - 2~1 (~)) 

qn 

-41 f ~i--I 
+, .  , /R(~)(r(~) - 2¢"(~)) 

d~, 

we immediately arrive at formulae (18) after introducing 

fk  = v/R(~)(r(~) _ 2~k(se)). 

d~ + . . .  

Example 3.3 (The Neumann Problem). On the other hand, for the particular choice 

~k(qk) = c(qk)n-! _ (qk)n, 

the potential h assumes the form 

n • 

h(q) = c -  E q k, 
1 

which is just the restriction of the quadratic potential h = C1X 12 + . . .  q - -  cn+lxn+l 2 from 

the ambient Euclidean space E n+l onto the unit sphere S n. So in this case our second 

C = Z C  j ,  
j=l 

Example 3.2 (Geodesics on a quadric). For the particular choice 

4 n + l  . 
qgk(qk)=_~_£U(cJ_qk),  c j =const . ,  j =  1 . . . . .  n + l ,  

the metric (19) is that of the n-dimensional quadric: 

X 12 x n + l  2 

- - + - - - +  - -1 ,  
C 1 cn+l 

written down in the co-ordinates qi of the lines of curvature: 

xl = ~c, l-I~=, (cl -qk)  xn+l ~_ ~cn+l ]"I~=,(cn+l--q k) 
H j ¢ l (  CI - -  CJ) . . . . .  Uj¢n+l  ( C n + l  - -  C J)" 

Thus, in this particular case our first construction reduces to the famous problem of geodesics 
on quadrics, the integrability of which is due to Jacobi [7]. 
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construction reduces to the famous integrable problem of the motion of a particle on the 
unit sphere under the action of a quadratic potential, discussed by Neumann [9]. In this 
case Eq. (18) becomes the Jacobi inversion problem, which is known to be solvable in 
0-functions. 

Example 3.4 (n = 2). In Example 2.1 we transformed the H6non-Heiles system (10) to 
the form (l 3) in parabolic co-ordinates. With this choice of metric, any choice of h and f 
given by (17) (with n = 2) can be integrated by our second scheme. In particular, if we 
choose ~i (~) = 8n, then 

n - l  
h (n )  __ ( q l ) n  _ ( q 2 ) n  _ Z (ql)n-l- i(q2)i" 

q l  _ q2  
i=0  

These symmetric polynomials, when written in the original ( Q l  Q2) co-ordinates of Exam- 
pie 2.1 (flat co-ordinates for this metric), take the well-known form of polynomial potentials 
separable in parabolic co-ordinates. For instance, 

h(2) : 4(QI) 2 + (Q2)2, h(3) = 2(QI) 3 + Q1 (Q2)2, 

h(4) : 16(Q1) 4 d-- 12(Q1)Z(Q2) 2 + (Q2)4. 

Some simple non-polynomial potentials can be obtained by putting 7/(~) = ~-n: 

y~n-li=o (q 1 )n- l - i (q2) i  
hi-") = (qlq2)n 

In the flat co-ordinates (Ql, Q2), these take the form: 

1 QI 4(Q1)2 + (Q2)2 
h ( - i ) -  (Q2)2' h(-2) =-2(Q2)----- ~ ,  h(-3)-- (Q2)6 

We can, of course, choose any linear combination of these. All can be solved by using the 
canonical transformation (30). 

4. Conclusions 

We have demonstrated that any linearly degenerate semi-Hamiitonian system of hydro- 
dynamic type 

q~ = vi (q)qi 

can be "decoupled" into an infinite number of finite-dimensional Hamiltonian subsystems, 
generated by a pair of commuting Hamiltonians: 

1 + g k k p 2  1 _ vl~gkkp 2 + f .  H=2Z"~=I k + h ,  F = ~ k = l  
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Since the metric coefficients gkk and the potentials h, f are defined up to sufficiently many 
arbitrary functions, it is guaranteed that any solution of the hydrodynamic system under 
consideration can be obtained by integrating the corresponding Hamiltonian flows 

O F  i O F  qi _ OH pi _ OH and q~ -- Pt -- 
Op i , x Oqi Op i ' Oqi 

for appropriate Hamiltonians H and F. 
Furthermore, our formulae show that all St~ickel systems associated with the hydrody- 

namic system (15) are mapped by our canonical transformation (30) (but with arbitrary 

R(qk))  onto the same system in (ai, b i ) co-ordinates, with solution (25). Our formulae thus 
provides a canonical transformation between any pair of our St~ickel systems. In particular, 
Examples 3.2 and 3.3 are related by canonical transformation. This is presumably different 
from the connection shown by Kn6rrer [8] (see also [ 12]), who showed that geodesics on 
a quadric can be mapped onto solutions of the Neumann problem by a Gauss map com- 
bined with an appropriate reparametrisation of trajectories. Our construction gives the more 
general result that (for instance) the equations of geodesics, corresponding to the Hamii- 
tonian (20), can be mapped onto the dynamical system with the Hamiltonian (27), which 
describes the motion of a particle on the unit sphere under the force of a certain (in general 
non-quadratic) potential. 

Eq. (15) is just one example of linearly degenerate, semi-Hamiltonian hydrodynamic sys- 
tem. Other examples will give rise to other St~ickel spaces, with a similar class of canonical 
transformations. We hope to return to these questions in a separate publication. 

A similar approach applied to non-homogeneous systems, 

q~ = vi(q)qix + f i ( q ) ,  (31) 

requires the Hamiltonians H and F to possess non-trivial terms which are linear in momenta: 

1 n 

Z g k l ' ( p k  -- Ak) 2 + h, (32) 
H : 2 k =  I 

f = ~ v~gkk(Pk -- Ak)2 + Z f k p ~  + f .  (33) 
k = l  k = l  

The corresponding Hamiltonian flows 

OF • .. 
qi x -  OH _ g i i ( p  i - A i )  and q [ - -  - - v ' g " ( p i - A i ) + f i  

Opi Opi 

immediately imply 

q{ = v i q i  + f i  
X 

We emphasise, that this approach is applicable only if the "homogeneous" part of system 
(31) is linearly degenerate and semi-Hamiltonian. It turns out, however, that if  f i  (q) are 
non-zero, then there exist at most finitely many (up to canonical transformations q 
q, p w-~ p + grader(q)) pairs of commuting Hamiltonians (32) and (33). However, this 
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gives a straightforward procedure of  constructing a multiparameter family of  particularly 

interesting solutions of  the system under consideration. 

E x a m p l e  4.1 (Gibbons-Tsarev system). Gibbons and Tsarev [6] recently considered the 

finite reductions of  the Benney moment equations. They found that the 2-reductions are 

given in terms of  the solutions of  the non-homogeneous hydrodynamic system: 

1 1 
q t  I : qeq~ + q 1 _ _  q2'  q2 = qtq2 + q2 _ ql" (34) 

One can show, that the only possibility for H and F is the following: 

H - -  p~ - p22 +&(ql  + q 2 ) ,  
qJ _ q 2  

F - -  q2p~ _ ql p2 ~Pl - P2 
ql q2 + _ q e  +&qlq2 '  & = const. _ ql 

Thus H and F are defined uniquely up to an arbitrary constant & 

This example generalises to the n-component case: 

1 
where v i : ~ qk _ qi. 

q[ = vi q ix -k- l-ik#i(q i _ qk) 1 

Here H and F are of the form 

i=i [Ik#i (qi - qk) 

F = ~ ui p2i 
i=l I % # F ?  - d )  

where g ---- const. 

/1 

q-,~ Z q i , 

i=1 

q_ ~"~ Pi _f_ , ~-~ (l _ Sik)qiqk 
i=1 Hk¢i  (qi -- qk) i,k=l 

We discuss non-homogeneous systems in more detail in [4], where we show that the 

functions f i  a r e  just the components of a Killing vector of  the metric gii. 
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